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Simple method for calculating the propagation of
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in experimental geometries
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A formalism based on plane-wave decomposition is applied to the linear propagation of terahertz pulses in
experimental geometries. The approach is general and is not restricted to any particular polarization (or cur-
rent) source. Near- and far-field expressions easily amenable to numerical computation are obtained for the
temporal profiles and spectra of terahertz pulses in layered structures, as often encountered in experiments.
The effects of polarization and angle-dependent multiple reflection and transmission, as well as of material
dispersion, are included. Examples of optical rectification in GaAs and ZnTe are presented to illustrate the
simplicity of the method and are compared with experiments. The numerical evaluation of the expressions for
the terahertz electric field in practical experimental geometries is straightforward. © 2003 Optical Society of
America
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1. INTRODUCTION
The temporal profile of an electromagnetic wave often
carries important information about the source that gen-
erated the wave. A description of the effects of propaga-
tion on the temporal profile of such waves is often critical
both in determining what information can be extracted
from the measurements of the temporal profile and in ex-
tracting it. For experiments with simple boundary
conditions,1 the properties of the radiation can be studied
analytically. In more-specialized applications, however,
to extend the reach of analytical methods it is necessary
to use approaches that allow some approximations to be
made. In optics, for instance, one can use the paraxial
wave equation to study the propagation of radiation in
free space and thereby derive important analytical ex-
pressions for the beam properties.2 However, recent ad-
vances in the production of few-cycle ultrashort optical
pulses3 and terahertz (THz) pulses4–6 have permitted the
creation of electromagnetic pulses that cannot be de-
scribed by the paraxial wave equation. These pulses are
often used in situations when the phases of different fre-
quency components with respect to the envelope function
are critical. Experimental techniques have been devel-
oped to time resolve the amplitude and phase of this
radiation.4,7,8 It has been shown that the respective time
signatures of this radiation in the near field and in the far
field are vastly different.9–11 The full solution of Kirch-
hoff ’s diffraction integral has been used to model some ex-
periments and has yielded excellent agreement with ex-
perimental data.12 Yet the generalization of this
formalism to more-complicated geometries, including in-
terfaces, is not straightforward. And, whereas solving
Maxwell equations with finite-difference techniques is al-
ways an option, doing so can be difficult, particularly in
three dimensions.13

Our goal in this paper is to introduce a practical
0740-3224/2003/061374-12$15.00 ©
method for calculating radiated fields from any prescribed
source, in both the near and the far fields, such that an
easy comparison of predicted results with experimental
data can be achieved. This method permits the extrac-
tion of important details about the dynamics of the source
that generated the radiation.14 In this study the propa-
gation of broadband THz radiation in experimental situ-
ations is modeled; polarization-dependent effects at inter-
faces, multiple reflections, and dispersion of the index of
refraction as well as near- and far-field pulse reshaping
effects are taken into consideration. Sipe15 has shown
that a plane-wave decomposition of the field permits a de-
scription of the propagation in both the near and the far
fields in terms of simple, intuitive Green functions. The
framework makes use of well-known results from linear
optics (e.g., complete frequency-dependent Fresnel trans-
mission and reflection coefficients) and lends itself nicely
to an analysis of relatively complex geometries with mul-
tiple reflections and arbitrary polarizations, as are found
in most practical studies.

The structure of this paper is as follows: In Section 2
we build on earlier research15 and introduce the formal-
ism and notation. Next, in Section 3, we describe the
propagation of radiation through vacuum, dielectric me-
dia, and lenses. We then use the results in Section 4 to
obtain the Green functions for several geometries and cal-
culate the radiation from an arbitrary polarization
source. Finally, straightforward examples from realistic
situations in both the near and the far fields are worked
out, the results of which can be directly used in modeling
most experimental situations.

2. FORMALISM
Plane waves and spherical waves are both eigenmodes of
the Helmoltz equation. Therefore any propagating elec-
2003 Optical Society of America
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tromagnetic field can be expressed as a superposition of
either plane or spherical waves. The key advantage in
using plane waves rather than spherical waves is that the
description of transmission and reflection at interfaces
takes a simple form, in that the ŝ- and p̂-polarized com-
ponents of the field can usually be treated independently.
Expressions for the propagation through any layered me-
dium, by use of results from thin-film optics, can then eas-
ily be obtained. For these reasons we employ a plane-
wave basis with polarization vectors ŝ and p̂. Each
plane wave is fully defined by four parameters: its fre-
quency V, its wave vector n, its polarization vector ( ŝ or
p̂), and, finally, its complex amplitude. The wave vector
n is further decomposed into two components, 6w (possi-
bly complex) along the axial direction ẑ and K (always
real) in the xy plane transverse to ẑ. The vector R
5 RR̂ 5 xx̂1 yŷ spans this transverse plane; the posi-
tion vector in three dimensions is r 5 xx̂ 1 yŷ 1 zẑ
5 R 1 zẑ. A plane-wave distribution is denoted by the

Fourier spectral density E(V, K). In an infinite medium
with no sources, the field that results from the superposi-
tion of such plane waves that, together with the associ-
ated magnetic field, satisfies the Maxwell equations takes
the form

E~r, t ! 5 E
0

` dV

2p
E dK

~2p!2 E~V, K; z !exp~iK – R!

3 exp~2iVt ! 1 c.c., (1)

where

E~V, K; z ! 5 E1~V, K; z ! 1 E2~V, K; z !, (2)

E6~V, K; z ! 5 E6~V, K!exp~6iwz !, (3)

E6~V, K! 5 ŝE6
s ~V, K! 1 p̂6E 6

p6~V, K!, (4)

where a subscript 6 is now used to denote the 6ẑ direc-
tion in which the field is either propagating or suffering
evanescent decay with wave-number component 6w
along the axial direction. We refer generally to the 1 (2)
component as the upward- (downward-) propagating
wave. For example, the distribution representing an
upward-propagating plane wave of complex amplitude
E

1

V+ ,K+ at z 5 z + would be represented by

E1~V, K; z +! 5 E
1

V+ ,K+d ~V 2 V +!d ~K 2 K+!, (5)

where d (x) denotes the Dirac delta distribution. The
wave and polarization vectors are sketched in Fig. 1 for a
situation in which they are real. More generally, in an
isotropic medium they are given by

n6 [ K 6 wẑ, (6)

w [ ~Ṽ2n2 2 K2!1/2, (7)

ŝ [ K̂ 3 ẑ, (8)

p̂6 [ n21~Kẑ 7 wK̂ !, (9)

where n6 5 nn̂6 is the wave vector with wave number n

5 Ṽn; Ṽ [ V/c, where c is the speed of light; n is the (in
general complex) index of refraction; K 5 KK̂ is the
transverse component of the wave vector; and the square
roots of complex numbers z are defined such that Im Az
> 0 and that Re Az > 0 if Im Az 5 0. Throughout, we
use subscripts, such as in wi and p̂ i6 , to denote the indi-
cated parameters in a medium of refractive index ni . It
should be noted that for an upward-propagating plane
wave, given V and K, one knows the direction n̂ i6 of the
propagation vector through Eqs. (6) and (7) and that the
direction depends on the index of refraction of the me-
dium, ni .

3. PROPAGATION AND
TRANSFORMATIONS
In realistic experimental geometries, THz pulses propa-
gate through air, dielectric media, and collimating optics.
In as much as we are interested in the linear propagation
of THz pulses we can describe the transformation of a
single plane wave through such media and optics and re-
construct the transformation of a THz pulse from a super-
position of plane waves. We now introduce the necessary
transformations of plane waves through dielectric media
and through lenses.

A. Free Space and Dielectrics
In vacuum, dielectric, or any layered media for which the
interfaces are parallel to the xy plane, a plane wave al-
ways remains a plane wave or a sum of plane waves with
the same wave vector component K. The propagation of
the fields is facilitated by the use of transfer matrices. A
host of conventions are in common use.16 For positive
frequency V, we find it convenient to define the matrices
with respect to formal vectors ei(z) of the form

ei~z ! 5 F E1~V, K!exp~iwiz !

E2~V, K!exp~2iwiz !G , (10)

where we consider a medium with index of refraction ni .
Here E6(V, K) identifies either E 6

s (V, K) or E 6
p6(V, K).

Separate formal vectors ei(z) are used for ŝ- and
p̂-polarized light because the effects of interfaces on the
propagation of those two polarizations can be treated in-
dependently. The transfer matrix Mi(z) that transforms
the formal vector of Eq. (10) on propagation in a uniform
isotropic medium is

Mi~z ! 5 Fexp~iwiz ! 0

0 exp~2iwiz !
G , (11)

Fig. 1. Coordinate systems used in the calculations, sketched
for ŝ, p̂6 , and n6 real. (a) Axial direction ẑ, wave-vector com-
ponent K, and polarization ŝ. (b) Polarization vectors ŝ and p̂6

for plane-wave directions n̂6 . (c) Vector decomposition of plane-
wave vector n6 into its transverse (K) and axial (6wẑ) compo-
nents.
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i.e., ei(z1) 5 Mi(z1 2 z2)ei(z2) if z1 and z2 are in the
same medium. The matrix Mij for passage through an
interface that separates media i and j takes the same
form for either ŝ- or p̂-polarized radiation; it is

Mij 5
1

tij
F 1 rij

rij 1 G , (12)

i.e., ei(z +
1) 5 Mijej(z +

2) if medium i exists at z . z + and
medium j at z , z + , where the Fresnel coefficients for ŝ
and p̂ polarizations are

rij
p 5

winj
2 2 wjni

2

winj
2 1 wjni

2 , rij
s 5

wi 2 wj

wi 1 wj
, (13)

tij
p 5

2ninjwi

winj
2 1 wjni

2 , tij
s 5

2wi

wi 1 wj
.

(14)

Now that basic propagation in dielectric media has been
described, we shall examine the case in which a lens is in
the path of the beam.

B. Thin Lens
If the refractive index of a lens is not too large and if the
lens is not too small, one achieves a good approximation of
the effect of the lens on a beam of light by modeling it as
a phase mask locally affecting each ray that propagates
0 if R . L, with a corresponding distance in vacuum
dvac(R) 5 R2/2R̃ if R , L and DL if R . L. Hence,
within the usual approximations,17 at z 5 do 1 DL the
input plane wave has acquired a phase as a function of
radial distance R and is now described by

E~R 1 @do 1 DL# ẑ, t !

5 E
1

V+ ,K+ exp@iwvacdvac~R!

1 iw lensd lens~R! 1 iK+ • R 2 iV +t# 1 c.c., (15)

where w lens (wvac) is the z component of the wave vector
inside (outside) the lens material. Reflections from any
of the interfaces as well as polarization-dependent refrac-
tion effects are neglected. The output wave is clearly no
longer a plane wave because of the R dependence im-
printed on its phase. Thus, at z 5 do 1 DL , an incident
plane wave of transverse wave vector K+ has become a
distribution of plane waves E1(V, K8; d + 1 DL):

E~R 1 @do 1 DL# ẑ, t !

5 E
0

` dV

2p
E dK8

~2p!2 E1~V, K8; do 1 DL!

3 exp~iK8 • R 2 iVt ! 1 c.c.,
(16)

with
E~R 1 @do 1 DL# ẑ, t ! 5 H E1
V+ ,K+ exp~2iDwR2/2R̃ 1 iw lens DL 1 iK+ • R 2 iV +t ! 1 c.c. R , L

E1
V+ ,K+ exp~iwvac DL 1 iK+ • R 2 iV +t ! 1 c.c. R . L

, (17)
through it.17 Consider first a wave distribution incident
from z , do with Fourier spectrum E1(V, K; do

2)
5 E

1

V+ ,K+d (V 2 V +)d (K 2 K+) at z 5 do
2 on a para-

bolic lens of total thickness DL , width 2L, radius of cur-
vature R̃ 5 R + , and index of refraction n, as shown in
Fig. 2. Recall that this represents a plane wave with
transverse wave vector K+ , frequency V + , and vector am-
plitude E

1

V+ ,K+. The thickness of the lens as a function of
radial distance is d lens(R) 5 DL 2 R2/2R̃ if R , L and

Fig. 2. Lens geometry used in the calculation. The upward-
propagating beam is incident from z , do .
where Dw 5 w lens 2 wvac . One easily extracts the dis-
tribution E1 (V, K8; do 1 DL) with an inverse Fourier
transform of Eqs. (15) and (16):

E1~V, K8; do 1 DL!

5 E
1

V+ ,K+d ~V 2 V +!H exp~iw lensDL!E
R,L

dR

3 exp@i~K+ 2 K8! • R 2 iDwR2/2R̃#

1 exp~iwvacDL!E
R.L

dR exp@i~K+ 2 K8! • R#J .

(18)

As can be seen from Eq. (18), a single plane wave will
exhibit diffraction rings after it has propagated through
the lens because of the effect of the edge of the lens.
Similarly, superpositions of plane waves that result in
spatial profiles larger than the lens itself will not be prop-
erly focused or collimated and will therefore be attenu-
ated. We can simplify the mathematical expressions and
keep essentially the same attenuation effect as in Eq. (18)
if, instead of a finite lens of half-width L, a Gaussian ap-
erture (or soft aperture) of 1/e half-width A2L (in ampli-
tude) is assumed. The width of the soft aperture is de-
fined such that the energy of a plane wave after the lens
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is the same as what it would be were it a hard aperture.
One can easily show that Eq. (15) with a complex radius
of curvature

1

R̃
5

1

R +

2
i

DwL2 (19)

represents a Gaussian aperture of half-width A2L, where
R + is the real radius of curvature of the lens. Using the
shorthand notation

KL
2 5

2Dw

R +

2
2i

L2 , (20)

we can then approximate Eq. (18) by

E1~V, K8; do 1 DL!

' E
1

V+ ,K+d ~V 2 V +!exp~iDwDL!E dR

3 exp@i~K+ 2 K8! • R#expS 2i
R2KL

2

4 D (21)

5
4pi

KL
2 E

1

V+ ,K+d ~V 2 V +!

3 expS i
uK+ 2 K8u2

KL
2 1 iDwDLD , (22)

where the integral has been performed by use of the
identity18

E
0

2p

df exp~imf !exp~ix cos f ! 5 2pimJm~x !, (23)

where Jm(x) is the Bessel function of order m, as well as

E
0

`

RdR exp~iaR2!J0~bR ! 5
i

2a
expS 2ib2

4a D . (24)

If a distribution of waves E1 (V, K; do
2) is incident upon

the lens, the resultant distribution behind the lens is ob-
tained by superposition:

E1~V, K8; do
1! 5

4pi

KL
2 E dK

~2p!2 E1~V, K; do
2!

3 expS i
uK 2 K8u2

KL
2 D , (25)

where we have taken the thin lens limit where
DL → 01. Equations (20) and (25) can be used to
implement the lens transformation numerically. How-
ever, it is shown in Section 5 below that the transforma-
tion that corresponds to a common experimental geom-
etry in which a Gaussian beam is collimated and
refocused can be treated analytically.

4. SOURCES, GREEN FUNCTION, AND
GEOMETRY
Although we have described the propagation of THz ra-
diation in dielectric media and lenses, we have not dis-
cussed the generation of the radiation itself. From stan-
dard electromagnetism theory, it is known that
electromagnetic fields are radiated from oscillating cur-
rents. With any current density J (r, t), we can associ-
ate a polarization potential (or density) according to
J (r, t) 5 ]P(r, t)/]t. Obtaining the radiated electric
field for a given polarization densityP(r, t) is a boundary
condition problem and depends on the geometry of the
system under study. For instance, if source P(r, t) is
embedded in a dielectric medium with interfaces to other
media, there will be multiple Fresnel reflections of the
generated waves that will interfere inside and outside the
dielectric material and affect the resultant radiation spec-
trum and profile. If the polarization source is described
in terms of P(V, K; z) such that

P~r, t ! 5 E
0

` dV

2p
E dK

~2p!2 P~V, K; z !exp~iK • R!

3 exp~2iVt ! 1 c.c., (26)

the radiated field is obtained in general from the follow-
ing Green function integral:

E~V, K; z ! 5 E dz8GJ ~V, K; z 2 z8! • P~V, K; z8!.

(27)

In an infinite medium of index n1 , the Green function in
MKS units, is15

GJ ~V, K; z ! 5
iṼ2

2e +w1
~ ŝ ŝ 1 p̂11p̂11!u~z !exp~iw1z !

1
iṼ2

2e +w1
~ ŝ ŝ 1 p̂12p̂12!u~2z !

3 exp~2iw1z ! 2
1

n1
2e +

ẑ ẑd ~z !, (28)

with Heaviside function u(z) 5 1, 0 for z . 0, ,0 and
where e + is the permittivity of free space. The right-hand
side of Eq. (28) has terms that represent the upward-
@exp(iw1z)# and the downward- @exp(2iw1z)# propagating
(or evanescent) waves originating from a polarization
density P(V, K; z8) at z8 for both ŝ and p̂16 polarizations
as well as a local term that will not be relevant for this
study and that was discussed earlier.15 For an arbitrary
geometry with a source embedded in a dielectric, one uses
the results from Section 3 to obtain the Green function for
any polarization source embedded in any layered dielec-
tric structure.

A common geometry is shown in Fig. 3, where two
semi-infinite dielectric materials, with indices of refrac-
tion n1 and n2 (which can be frequency dependent), are
shown on either side of a third material, with index of re-
fraction n3 and thickness D. When the polarization

Fig. 3. Three-layer geometry with polarization source in the
medium with index n3 .
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source is contained in medium 3, the expression for the
upward-propagating radiation in medium 1 for z . 0 is
given by15

E1~V, K; z ! 5
iṼ2

2e +w3
(

q̂
Cq exp~iw1z !

3 F q̂11q̂31 • E
2`

0

dz8 exp~2iw2z8!

3 P~V, K;z8! 1 r32
q exp~2iw3D !q̂11q̂32

• E
2D

0

dz8 exp~iw3z8!P~V, K; z8!G ,

(29)

which is expressed as a sum over polarization states q̂
5 $ ŝ, p̂% in medium i, where ŝ1 5 ŝ2 [ ŝ. The Fabry–
Perot term for ŝ and p̂ polarizations is

Cq 5
t31

q

1 2 r32
q r31

q exp~i2w3D !
, (30)

where tij
q and rij

q are the Fresnel coefficients for that po-
larization. At any point, one obtains the full electric field
in space and time by applying a Fourier transform back
into real time t and real space r. The full broadband field
can be written explicitly from Eq. (1), and its explicit cal-
culation for different geometries and sources is the object
of Section 5.

Expressions for the calculation of the radiation profile
by use of Eq. (1) together with Eq. (27) and the appropri-
ate Green function can be simplified when what is wanted
is the temporal profile far from the polarization source
P(V, K; z). To that end it is useful to rewrite expan-
sions of the form of Eq. (1) involving E1(V, K; z) as

E~r, t ! 5 E
0

` dV

2p
E idK

2pw
e1~V, K!exp~iwz !

3 exp~iK • R 2 iVt ! 1 c.c., (31)

where

e1~V, K!exp~iwz ! 5 2
iw

2p
E1~V, K; z !. (32)

The far-field limit, as r → ` with z . 0 and r̂ 5 r/r fixed,
is19

E~r, t ! ; E
0

` dV

2p
e1~V,K̄!

exp~iṼnr 2 iVt !

r
1 c.c.,

(33)

where the values of w and n are calculated in the medium
where the wave is propagating in the far field and K̄
5 n r̂ • (UJ 2 ẑ ẑ), where UJ is the unit tensor. Clearly,
the Fourier component with wave vector K̄ dominates for
a given r̂ and frequency V. For instance, if one looks at
the beam at a far distance z in the direction of the ẑ axis,
then r̂ 5 ẑ and K̄ 5 n ẑ • (UJ 2 ẑ ẑ) 5 0.

5. EXAMPLE CALCULATIONS
We first discuss how to use Eq. (1) to calculate the tempo-
ral profile for an infinite medium. The integral over V is
a simple Fourier transform, but the integral over K in Eq.
(1) is complicated because of the vector nature of K. The
product K – R, the arbitrary distribution P(V, K; z), and
the implicit dependence of ŝ and p̂6 on K [Eqs. (8) and (9)]
make the integral over the orientation of K nontrivial, ex-
cept for the far-field case, for which expression (33) can be
used. Moreover, in general, radiated field E(r, t) has
components along all three Cartesian coordinates even if
P(V, K; z) is linearly polarized. Therefore, before ex-
plicitly integrating Eq. (1) it is useful to make appropriate
assumptions about the polarization source P(V, K; z), as
well as to restrict ourselves to the component of interest
of the radiated field.

To illustrate the use of the formalism, we calculate the
temporal profile of the electric-field component polarized
along x̂, at R 5 0 (i.e., on the ẑ axis) for the upward-
propagating wave originating from polarization source
P(r, t). Also, we take polarization source P(r, t) to be
cylindrically symmetric and linearly polarized along x̂,
thereby making it simple to describe the polarization den-
sity and easy to evaluate the integrals. These approxi-
mations correspond to most experimental situations in
the literature today and illustrate all features of the for-
malism.

To illustrate the results with an analytically simple
case, we first consider a cylindrically symmetric sheet of
polarization

P~V, K; z ! 5 x̂P~V, K !d ~z ! (34)

embedded in a uniform medium of index of refraction n1 .

A. Asymptotic Expression for the Far Field
A simple expression for the far-field temporal profile from
the polarization sheet [Eq. (34)] can be obtained by use of
the Green function [Eq. (28)] for an infinite medium in the
general expression for the field [Eq. (27)] and by substitu-
tion of the field in the far-field limit [expression (33)].
For an observation point on the ẑ axis (i.e., r 5 zẑ and
therefore K̄ 5 0), the x̂ component of the field is given by

x̂ •E~zẑ, t ! ;
1

4pe +z
E

0

` dV

2p
Ṽ2P~V, 0!

3 exp~iṼn1z 2 iVt ! 1 c.c. (35)

The results for polarization with a Gaussian spectrum
and a Gaussian spatial profile,

P~V, K ! 5
4p3/2

sVsK
2 Po exp~2V2/sV

2 !exp~2K2/sK
2!,

(36)

are shown in Fig. 4 for z 5 50 mm in local time t8 5 t
2 z Re(n1)/c, where Re(n1) is the real part of the index of
refraction and Po is the peak polarization density. The
far-field profile follows the time derivative of the current,
]J/]t 5 ]2P/]t2, as can be seen from the figure. Alter-
natively, it can be seen directly from expression (35), as
the temporal Fourier transform of the time derivative of
the current is proportional to V2P(V, K).
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B. Near and Far Fields
In general, the detector must be sufficiently far from the
source for the asymptotic limit [expression (35)] to be ad-
equate. If such is not the case, one must integrate Eq.
(1). The integral over K is written out as a two-
dimensional integral in cylindrical coordinates, where K
5 uKu and f is the angle between the x̂ axis and vector K.
All dyadics of the form âb̂, where â and b̂ are ŝ or one
value of p̂, are expanded in the form

âb̂ 5 (
m

fJm~ âb̂ !exp~2imf !, (37)

where only a finite number of coefficients fJm(âb̂) survive
(m 5 62, 61, 0). These coefficients are easily deter-
mined and are given in Appendix A. The integral over f
can then be performed analytically, whereas the remain-
ing integrals over V and K are performed numerically.
Performing one of the integrals analytically considerably
reduces both the computing time and the memory re-
quirements for the remaining computation and makes the
results developed here easily handled by a modest per-
sonal computer.

To obtain the x component of the upward-propagating
field in the case of a polarization sheet [Eq. (34)] in an in-
finite medium, Eqs. (27) and (28) are used:

x̂ • E1~V, K; z ! 5
iṼ2

2eow1
H(

m
@ fJm~ ŝ ŝ !

1 fJm~ p̂11p̂11!#exp~2imf !J
• x̂ exp~iw1z !P~V, K !. (38)

The x̂ component of E1(V, K; z) follows from the use of
fJm given in Appendix A:

x̂ • E1~V, K; z ! 5
iṼ2

2eow1
S 1

2
2

1

2
cos 2f 1

w1
2

2n1
2

1
w1

2

2n1
2 cos 2f D exp~iw1z !P~V, K !.

(39)

To obtain the temporal profile of the THz field we substi-
tute Eq. (39) into Eq. (1) and integrate over f, V, and K;

Fig. 4. Temporal profile showing the far field at z 5 50 mm for
2psV

21 5 200 fs and 2psK
21 5 1 mm in a medium with n1

2

5 10 1 i1024, similar to dispersionless GaAs. The field follows
the second time derivative of the polarization envelope function.
the first integral is done analytically. For an observation
point at r 5 zẑ (i.e., on axis), we obtain

x̂ •E~zẑ, t ! 5
i

2e +

E
0

` dV

2p
Ṽ2 exp~2iVt !E

0

` KdK

2p

3 S 1

2
1

w1
2

2n1
2D w1

21 exp~iw1z !P~V, K !.

(40)

When a broad range of wave vectors K is present, w1 can
decrease to a small value or even become imaginary. If
n1 is real, divergence w1

21 is purely formal because it can
be integrated over and can easily be handled analytically.
In practice, however, any residual absorption in medium
1 will ensure that w1 never vanishes [Eq. (7)]. The inte-
grand is then strongly peaked but can be integrated
numerically with appropriate sampling. The integrand
is sampled at different values of K@i# where

Fig. 5. Temporal profiles showing the transitions from near to
far field for common THz parameters with 2psV

21 5 200 fs and
2psK

21 5 1 mm in a medium with a dielectric constant n1
2

5 10 1 i1024 similar to dispersionless GaAs. (a) z 5 0 mm,
(b) z 5 8 mm, (c) z 5 50 mm. The arbitrary units are the same
for all three figures and are the same as those used in Fig. 4.
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w1(V, K@i1 1#) 2 w1(V, K@i#) is constant and equal to
D, as long as the corresponding change in K@i 1 1#
2 K@i# is smaller than D. Sampling parameter D is de-

creased appropriately until the calculated results do not
change. Results for a polarization of the type of Eq. (36)
are shown in Fig. 5 in local time t8 5 t 2 z Re(n1)/c and
at several z values. We see the onset of the asymptotic
solution [expression (35)] as the distance from the source
is increased. The radiated field follows the current or the
time derivative of the polarization J 5 ]P/]t close to the
source but is reshaped into the time derivative of the cur-
rent density ]J/]t 5 ]2P/]t2 in the far field, as was ob-
tained for Fig. 4.

6. EXPERIMENTAL GEOMETRIES AND
SOURCES
To extend the previous results to experimentally interest-
ing geometries and polarization sources is straightfor-
ward. The geometry of Fig. 3, often encountered in ex-
periments, is considered. For the purpose of example, we
consider a linearly polarized, cylindrically symmetric, op-
tically generated polarization source, as obtained from be-
low bandgap second-order rectification.6,14,20 The source
substrate of thickness D 5 100 mm is (110)-oriented
GaAs and is surrounded by air (i.e., n1 5 n2 5 1), as
shown in Fig. 3. The only nonzero second-order suscep-
tibility coefficients of GaAs are x2

(xyz) 5 100 pm V21,
where (xyz) is any permutation of xyz. The frequency-
dependent index of refraction n3(V) of GaAs is obtained
from experimental data.21 The optical pump beam is as-
sumed to be normally incident from z , 2D upon the
GaAs (medium 3). The spectrum of an optical pump
beam centered at v + with a Gaussian spatial profile is de-
scribed [Eq. (3)] by

E1~v, K!exp~2iv +D/c !

5
4p3/2

sv+
sk+

2 Ev+
exp@2~v 2 v +!

2/sv+

2#

3 exp~2uKu2/sk+

2 !, (41)

with a positive center frequency 2pcv +
21 5 1.55 mm, a

spectral width 2sv+

21 5 125 fs, and a spot 1/e width 100
mm, giving 2sk+

21 5 100 mm with a peak intensity inside
the crystal of 2uEv+

u2n3 /Z + 5 5 GW cm22, where Z +

5 377 V is the vacuum impedance. Neglecting diffrac-
tion of the optical pump beam yields the following polar-
ization density P(V, K; z):

P~V, K; z ! 5 x̂P~V, K !exp@~inv+

g
Ṽ 2 2av+

!~z 1 D !#,
(42)

with

P~V, K ! 5 2e +x2
effuEv+

u2
4p3/2

sv+
sk+

2 exp~2V2/sV
2 !

3 exp~2K2/sK
2 !. (43)

Here x2
eff 5 x2

(xyz)/2 is the effective nonlinear susceptibility
with the optical pump fields polarized along ŷ(1̄10); sV
5 A2sv+
and sK 5 A2sk+

are the spectral widths in fre-
quency space V and transverse wave-vector space K, re-
spectively; nv+

g 5 3.1 is the pump’s group index; and av+
is

the field absorption coefficient at pump frequency v + .

A. Asymptotic Expression for the Far Field
To obtain the far-field radiation propagating in the posi-
tive ẑ direction in the medium 1, we substitute polariza-
tion equation (42) into the expression for the field [Eq.
(29)] and use the result in Eq. (32) to obtain

e1~V, K! 5
Ṽ2

4pe +
(

q̂
CqF q̂31 • E

2D

0

dz8

3 exp~2iw3z8!P~V, K; z8!

1 r32
q exp~2iw3D !q̂32 • E

2D

0

dz8

3 exp~iw3z8!P~V, K; z8!G , (44)

which we substitute into the general expression for the
far field [expression (33)]. The integral over z8 can be
performed analytically and written as

E dz8 exp~7iw3z8!P~V, K; z8!

5 x̂P~V, K !E
2D

0

dz8 exp@~inv+

g Ṽ 2 2av+
!

3 ~z 1 D !]exp~7iw3z8! (45)

[ x̂P~V, K !L6~V, K !, (46)

where L6(V, K) is the effective interaction length for the
upward- and downward-propagating waves,

L6~V, K ! 5 F exp~inv+

g ṼD 2 2av+
D ! 2 exp~6iw3D !

7iw3 1 inv+

g Ṽ 2 2av+

G ,

(47)
and grows in magnitude as the fields approach the usual
phase-matching condition. For an observation point on
the ẑ axis (i.e., r 5 zẑ and therefore K̄ 5 0), the x̂ com-
ponent of the temporal profile of the beam is

x̂ •E~zẑ, t ! ; E dV

2p

Ṽ2

4pe +

CsP~V, 0!@L1~V, 0!

1 r32
s exp~2iw3D !L2~V, 0!#

3
exp~iṼnz 2 iVt !

z
1 c.c., (48)

where we took x̂ • ŝ 5 1 and x̂ • p̂ 5 0 to lift the ambigu-
ity of Eqs. (8) and (9) at K 5 0. The results are shown in
Fig. 6 at z 5 5 cm for the polarization source described by
Eq. (42), with the same parameters as before except for a
larger bandwidth, sV/2p 5 3.8 THz. The spectrum of
this radiation slightly overlaps the first phonon resonance
at 8.5 THz in GaAs, which is implicitly included by means
of n3(V). Our results demonstrate how all the disper-
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sive features of the source material are included in the
calculation. The inset of Fig. 6 shows the corresponding
spectrum amplitude; one can clearly see Fabry–Perot and
phonon resonances as well as the effects of the frequency-
dependent interaction length (which is zero at 6.1 THz).

B. Near and Far Fields
An approach similar to that which was used in Section 5
to calculate the near field for the polarization sheet is
used here to calculate the near-field temporal profile.
Starting from Eq. (29), the x̂ component of the field from
both polarizations is

x̂ • E1~V, K; z !

5
iṼ2

2e +w3
exp~iw1z !

3 (
q̂

C qF E
2D

0

dz8 exp~2iw3z8!x̂ • q̂11q̂31

• x̂P~V, K; z8! 1 r32
q exp~2iw3D !E

2D

0

dz8

3 exp~iw3z8!ẑ • q̂11q̂32 • x̂P~V, K8; z8!G . (49)

Using the results of Appendix A, we rewrite x̂
• q̂11q̂31 • x̂ and x̂ • q̂11q̂32 • x̂ and obtain the equation
for the field:

x̂ • E1~V, K; z ! 5
iṼ2

2eow3
exp~iw1z !P~V, K !FL1~V, K !

3S 1

2
Cs 2

1

2
Cs cos 2f 1

w1w3

2n1n3
Cp

1
w1w3

2n1n3
Cp cos 2f D

1 exp~2iw3D !L2~V, K !S 1

2
r32

s Cs

2
1

2
r32

s Cs cos 2f 2
w1w3

2n1n3
r32

p Cp

2
w1w3

2n1n3
r32

p Cp cos 2f D G . (50)

Fig. 6. Temporal profile of THz radiation from below bandgap
optical rectification with sV/2p 5 3.8 THz at z 5 5 cm. Inset,
spectrum amplitude.
Finally, to obtain the total field, we integrate Eq. (1)
over V and K with Eq. (50). The integral over f, the ori-
entation of K, is performed analytically, leaving us with

x̂ •E~zẑ, t ! 5 E
0

` dV

2p
exp~2iVt !

iṼ2

2e +

3 E
0

` KdK

2p
w3

21 exp~iw1z !P~V, K !

3 F S 1

2
Cs 1

w1w3

2n1n3
CpDL1~V, K !

1 exp~2iw3D !S 1

2
Csr32

s

2
w1w3

2n1n3
Cpr32

pDL2~V, K !G 1 c.c. (51)

to integrate numerically. The integrand is strongly
peaked as w3 approaches zero, and sampling of the func-
tion is done at different points K@i# that correspond to a
constant separation in w3 , as explained above. The on-
axis temporal profile of the THz radiation from below-
bandgap optical rectification from a 100-mm substrate of
GaAs is shown in Fig. 7. Multiple pulse reflections sepa-
rated by 2.3 ps (as expected from the thickness of the sub-
strate and its group index at THz frequencies) are ob-
served. The pulses that arise from the multiple
reflections are increasingly chirped because of the disper-
sion of GaAs and the fact that the reflected pulses have
traveled repeatedly through the sample.

C. Gaussian Beam through a Finite-Sized Lens
We have shown in the previous sections how to calculate
the near- and far-field temporal profiles of a THz beam as
it propagates exclusively through layered media. How-
ever, because experimental THz radiation sources are of-
ten essentially point sources, diffraction is important, and
the THz radiation must be collimated with optics for ex-
periments. The dimensions of the optics are such that
their finite clear apertures cannot collect all the energy of
low frequencies of the THz spectrum that have diffracted
to a size larger than the diameter of the collimating op-
tics. Various experimental designs make use of off-axis
parabolic mirrors (with a typical diameter of 2.5 cm) to
collimate and focus THz beams. Their finite size has the

Fig. 7. Temporal profile of THz radiation from below bandgap
optical rectification with sV/2p 5 1 THz near and far from the
source.
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effect of filtering out low frequencies while letting
through the higher frequencies. Also, most THz detec-
tion systems make use of a pair of matched mirrors with
focal length f 8, set up far from the source and in such a
way that the first one collimates a THz point source and
the second one focuses it. Within the usual
approximations,17 this arrangement can be treated as a
single optical element of focal length f 5 f 8/2, with do
5 di 5 f 8 (see Fig. 8). We assume that these mirrors
are adequately modeled by finite-sized thin lenses, as is
usually assumed in optics,17 and it is therefore sufficient
to study the case of a beam going through a single lens
replacing the mirrors. The transformation of an arbi-
trary beam by the mirrors is then given by that of the lens
in Eq. (25). In this section we make an example calcula-
tion, using the results of Subsection 3.B for the effect of
finite-sized mirrors on the spectrum and the temporal
profile of THz beams. In general, the results of the
transformation depend on the spatial profile and on the
radius of curvature of the beam at the entrance of the lens
and is an imaging problem beyond the scope of the study
reported here. Therefore we make the simplifying as-
sumption that the input spatial profile is Gaussian, as is
often the case experimentally.

We start with a linearly polarized Gaussian beam
E1(V, K) 5 4psK

22E1(V)exp(2K2/sK
2 ) at z 5 0, where

sK is the (real) Gaussian width of the transverse wave-
vector distribution and E1(V) 5 x̂E1(V) an arbitrary
spectral density. At a distance do from its waist is a lens
of focal length f 5 R + /(n 2 1), and we are interested in
calculating the field at a distance di behind the lens (see
Fig. 9). Using the paraxial wave approximation,22 we
can write the field immediately in front of the lens as

E1~V, K; do
2! 5 E1~V, K!expS iṼdo 2 i

K2do

2Ṽ
D .

(52)

A Gaussian spatial profile can therefore be written as

Fig. 8. Two lenses of focal length f 8 used to collimate and refo-
cus a point source located at the focus of one of the lenses are
equivalent to a single lens with a focal length twice as short, f
5 f 8/2; do (di), distance between object (image) plane and lens.
E1~V, K; do
2! 5

4p

sK
2 E1~V!exp~iṼdo!expS 2

K2

s l
2~do!

D ,

(53)

with

1

so
2~do!

5
1

sK
2 1 i

do

2Ṽ
. (54)

The lens transformation of Eq. (25) is performed with an
input wave distribution of the form of Eq. (53) with the
help of identities (23) and (24). We obtain the field im-
mediately behind the lens with

E1~V, K; do
1! 5

4p

sK
2

so
2~do!

so
2~do! 1 iKL

2 E1~V!

3 exp~iṼdo!expF2
K2

so
2~do! 1 iKL

2 G .

(55)

The field after a propagation by a distance di is then ob-
tained simply by multiplying Eq. (55) by exp(iwdi) [see
Eq. (11)]:

E1~V, K; do 1 di! 5
4p

sK
2

so
2~do!

s i
2~do , 0!

E1~V!exp@iṼ~do

1 di!#expF2
K2

s i
2~do , di!

G , (56)

where we have defined for simplicity

1

s i
2~do , di!

5
1

so
2~do! 1 iKL

2 1
idi

2Ṽ
. (57)

When the total field is calculated, for instance with Eq.
(1), on the z axis (i.e., R 5 0), and with polarization x̂, the
relative attenuation of frequency component V of the field
at z 5 do 1 di compared to the field at z 5 0 is given by

Fig. 9. Diffraction of a Gaussian beam originating from z 5 0
and transformation by a lens at z 5 do . The field at z 5 do
1 di is obtained. Inset, estimation of the cutoff frequency when
the lens is far from a point source with tan uco 5 L/do

' uKcou/Ṽ.
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F full~V, do , di! 5

x̂ • E @dK/~2p!2#E1~V, K; do 1 di!

x̂ • E @dK/~2p!2#E1~V, K; 0!

5
so

2~do!

so
2~0 !

s i
2~do , di!

s i
2~do , 0!

, (58)

and its magnitude is shown in Fig. 10 for sK
21

5 100 mm, L 5 2.5 cm, f 5 2.5 cm, and do 5 di
5 5 cm, corresponding to typical THz parameters. The
lens acts as a low-frequency filter. Low frequencies dif-
fract more than do high frequencies and, therefore, their
Gaussian spatial profiles at the lens are wider than the
lens itself and do not get fully collimated. Higher fre-
quencies, however, do not diffract so much and are almost
entirely collimated. This result is entirely expected and
can be understood intuitively with the following physical
argument: From previous results we know that the far
field in a given direction is related to a single transverse
wave vector K. Therefore the finite clear aperture of the
lens can be seen as collimating all waves that make an
angle with the ẑ axis smaller than uco , with tan uco

5 L/do ' uKcou/Ṽ (Fig. 9). Therefore any plane-wave
component E1(V, K) with uKu , uKcou goes through the
collimating lens, whereas a component with uKu . uKcou
does not. Inasmuch as we are assuming a Gaussian spa-
tial profile, the filter function can be approximated by

F approx~V! 5 erf 2S ṼL

fsK
D , (59)

which is also plotted in Fig. 10 for sK
21 5 100 mm, L

5 2.5 cm, f 5 2.5 cm, and do 5 di 5 5 cm. The effect
of a collimating lens placed in the far field is therefore to
limit the contribution to the profile of transverse wave
vectors uKu , LṼ/f. The beam after collimation and fo-
cusing can be obtained from

E1~V, K; do 1 di! 5 E1~V, K; do
2!F approx~V!

3 expS i
2 fK2

Ṽ
D exp~iwdi!.

(60)

Fig. 10. Magnitude of filter functions F full (solid curve) and
F approx (dotted curve) for sK

21
5 100 mm, L 5 2.5 cm, f

5 2.5 cm, and do 5 di 5 5 cm.
The filter function F approx(V) is for the finite size effect of
the mirror, exp@i(2 fK 2/Ṽ)# is the phase curvature intro-
duced by an infinite lens with a focal length equivalent to
that of the pair of matched mirrors, and exp(iwdi) is a
propagation factor from the lens to the focal plane. At
V 5 0, the limit of Eq. (60) is zero. Experimental results
of THz radiation that is collimated and refocused can be
modeled well with the combined use of near-field expres-
sions and filtering functions from collimating, focusing,
and propagating the beam. For example, the calculation
of THz radiation from optical rectification in a 30-mm
ZnTe crystal detected in a 27-mm ZnTe crystal (similar to
the experimental results reported by Han and Zhang23) is
shown in Fig. 11. The calculation makes use of Eq. (50)
with the additional multiplication by filter function Eq.
(60). The detection by means of electro-optic sampling
has been described elsewhere24 and is an additional filter
function. The full dispersion curve of ZnTe was obtained
from Leitenstorfer et al.25 and is used in calculation of the
index of refraction n3(V) at THz frequency as well as for
the electro-optic detection filter function. These calcula-
tions agree well with published results.23 The exact tem-
poral profile is strongly dependent on the frequency-
dependent index of ZnTe, and small temporal features are
not easily reproduced when strong phonon resonances are
present, as is the case here.

7. CONCLUSIONS
Plane waves with polarization bases ŝ and p̂ are ideal for
describing the linear propagation of electromagnetic ra-
diation because these two polarizations can be treated in-
dependently, even in the presence of layered structures.
In an infinite medium the Green function that relates the
radiated field to the source is known and the radiated
electric field is obtained by integration over all plane
waves of all frequencies and directions. In the far field it
is possible to simplify these integrals greatly, because
only the plane waves that have wave vectors in the direc-
tion of the observation point contribute to the field. In
the near field it is possible to simplify the expressions for
the field if one makes the usual assumptions that are eas-
ily met in practice, such as linear polarization and Gauss-
ian spatial profiles. The remaining integrals are then
easily implemented numerically. The generality of the

Fig. 11. Calculation in a 30-mm ZnTe crystal of the temporal
profile and spectrum of THz radiation from below bandgap opti-
cal rectification detected in a 27-mm-thick ZnTe crystal. These
calculations agree well with published results.23 EO, electro-
optic.
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method and its applicability to experimental situations is
demonstrated when thin-film transfer matrices are used
in conjunction with the boundary conditions (i.e., incom-
ing and outgoing waves) to produce the Green function for
a polarization embedded in a three-layer structure. We
used this Green function to calculate the temporal profiles
of the far and near-field radiation for a spatially Gaussian
polarization source [Eqs. (44) and (51)] and included the
dispersion of the source material, the multiple reflections
in the material, and the polarization dependence of the
transmissions and reflections at interfaces. Finally, a
pair of mirrors, often encountered experimentally for col-
limating and refocusing a THz pulse, is shown to cut off
low frequencies but to let higher frequencies through
mostly unaltered. The cutoff frequency depends on the
focal length, the size of the mirror, and the size of the THz
source. A complete modeling of experiments is possible
when the details of the frequency response of the THz de-
tection system are known. The dispersive properties of
various THz measurement schemes have been studied
and compared elsewhere.8,24–26 One example of experi-
mental data from the literature23 has been shown to be
well modeled by the formalism presented in this paper.
The straightforward application to experimental situa-
tions of the model presented here allows one to extract de-
tails about the THz generation process, as has been dem-
onstrated elsewhere.14 A computer implementation of
the results for calculating the various THz temporal pro-
files presented in the present paper is available on line.27

APPENDIX A: ANGULAR EXPANSION OF
THE POLARIZATION TENSORS
The various Fourier decompositions (m fJm exp(2imf ) of
the polarization tensors are calculated. For each fre-
quency V and transverse wave vector K, ŝ and p̂ i6 polar-
ization vectors as well as K̂ are defined in medium i as

K̂ 5 x̂ cos f 1 ŷ sin f,

ŝ 5 K̂ 3 ẑ 5 2ŷ cos f 1 x̂ sin f,

p̂ i6 5
1

n i
~Kẑ 7 wiK̂ !

5
K

n i
ẑ 7

wi

n i
x̂ cos f 7

wi

n i
ŷ sin f.

Nonvanishing fJm( ŝ ŝ)

fJ0~ ŝ ŝ ! 5
1

2
~ x̂ x̂ 1 ŷ ŷ !,

fJ12~ ŝ ŝ ! 5
1

2 F2
1

2
~ x̂ x̂ 2 ŷ ŷ !G 1

i

2 F2
1

2
~ x̂ ŷ 1 ŷ x̂ !G ,

fJ22~ ŝ ŝ ! 5
1

2 F2
1

2
~ x̂ x̂ 2 ŷ ŷ !G 2

i

2 F2
1

2
~ x̂ ŷ 1 ŷ x̂ !G .

Nonvanishing fJm(p̂6ip̂6j)
fJ0~ p̂6ip̂6j! 5
K2

n in j
ẑ ẑ 1

wiwj

2n in j
~ x̂ x̂ 1 ŷ ŷ !,

fJ11~ p̂6ip̂6j! 5 7
1

2 S Kwj
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ẑ x̂ 1

Kwi

n in j
x̂ ẑ D

7
i

2 S Kwj
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ẑ ŷ 1

Kwi
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ŷ ẑ D
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1
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Côté et al. Vol. 20, No. 6 /June 2003/J. Opt. Soc. Am. B 1385
ACKNOWLEDGMENTS
We thank F. Nastos and N. Laman for comments as well
as Photonics Research Ontario and the Natural Sciences
and Engineering Research Council of Canada for financial
support.

J. E. Sipe’s e-mail address is sipe@physics.utoronto.ca.

REFERENCES AND NOTES
1. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley,

New York, 1975), Chap. 9.
2. A. E. Siegman, Lasers (University Science, Mill Valley, Ca-

lif., 1986), Chap. 16.
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